skip to main content


Search for: All records

Creators/Authors contains: "Meng, Ying Shirley"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Manufacturing sustainable sodium ion batteries with high energy density and cyclability requires a uniquely tailored technology and a close attention to the economical and environmental factors. In this work, we summarized the most important design metrics in sodium ion batteries with the emphasis on cathode materials and outlined a transparent data reporting approach based on common metrics for performance evaluation of future technologies.

    Sodium-ion batteries are considered as one of the most promising alternatives to lithium-based battery technologies. Despite the growing research in this field, the implementation of this technology has been practically hindered due to a lack of high energy density cathode materials with a long cycle-life. In this perspective, we first provide an overview of the milestones in the development of Na-ion battery (NIB) systems over time. Next, we discuss critical metrics in extraction of key elements used in NIB cathode materials which may impact the supply chain in near future. Finally, in the quest of most promising cathode materials for the next generation of NIBs, we overlay an extensive perspective on the main findings in design and test of more than 295 reports in the past 10 years, exhibiting that layered oxides, Prussian blue analogs (PBAs) and polyanions are leading candidates for cathode materials. An in-depth comparison of energy density and capacity retention of all the currently available cathode materials is also provided. In this perspective, we also highlight the importance of large data analysis for sustainable material design based on available datasets. The insights provided in this perspective, along with a more transparent data reporting approach and an implementation of common metrics for performance evaluation of NIBs can help accelerate future cathode materials design in the NIB field.

    Graphical abstract

     
    more » « less
  2. Abstract Developing efficient catalysts is of paramount importance to oxygen evolution, a sluggish anodic reaction that provides essential electrons and protons for various electrochemical processes, such as hydrogen generation. Here, we report that the oxygen evolution reaction (OER) can be efficiently catalyzed by cobalt tetrahedra, which are stabilized over the surface of a Swedenborgite-type YBCo 4 O 7 material. We reveal that the surface of YBaCo 4 O 7 possesses strong resilience towards structural amorphization during OER, which originates from its distinctive structural evolution toward electrochemical oxidation. The bulk of YBaCo 4 O 7 composes of corner-sharing only CoO 4 tetrahedra, which can flexibly alter their positions to accommodate the insertion of interstitial oxygen ions and mediate the stress during the electrochemical oxidation. The density functional theory calculations demonstrate that the OER is efficiently catalyzed by a binuclear active site of dual corner-shared cobalt tetrahedra, which have a coordination number switching between 3 and 4 during the reaction. We expect that the reported active structural motif of dual corner-shared cobalt tetrahedra in this study could enable further development of compounds for catalyzing the OER. 
    more » « less
  3. All-solid-state batteries (ASSBs) are viewed as promising next-generation energy storage devices, due to their enhanced safety by replacing organic liquid electrolytes with non-flammable solid-state electrolytes (SSEs). The high ionic conductivity and low Young's modulus of sulfide SSEs make them suitable candidates for commercial ASSBs. Nevertheless, sulfide SSEs are generally reported to be unstable in ambient air. Moreover, instead of gloveboxes used for laboratory scale studies, large scale production of batteries is usually conducted in dry rooms. Thus, this study aims to elucidate the chemical evolution of a sulfide electrolyte, Li 6 PS 5 Cl (LPSCl), during air exposure and to evaluate its dry room compatibility. When LPSCl is exposed to ambient air, hydrolysis, hydration, and carbonate formation can occur. Moreover, hydrolysis can lead to irreversible sulfur loss and therefore LPSCl cannot be fully recovered in the subsequent heat treatment. During heat treatment, exposed LPSCl undergoes dehydration, decomposition of carbonate species, and reformation of the LPSCl phase. Finally, LPSCl was found to exhibit good stability in a dry room environment and was subject to only minor conductivity loss due to carbonate formation. The dry room exposed LPSCl sample was tested in a LiNi 0.8 Co 0.1 Mn 0.1 O 2 |LiIn half-cell, exhibiting no significant loss of electrochemical performance compared with the pristine LPSCl, proving it to be compatible with dry room manufacturing processes. 
    more » « less
  4. null (Ed.)
  5. Abstract

    Prelithiation as a facile and effective method to compensate the lithium inventory loss in the initial cycle has progressed considerably both on anode and cathode sides. However, much less research has been devoted to the prelithiation effect on the interface stabilization for long‐term cycling of Si‐based anodes. An in‐depth quantitative analysis of the interface that forms during the prelithiation of SiOxis presented here and the results are compared with prelithiaton of Si anodes. Local structure probe combined with detailed electrochemical analysis reveals that a characteristic mosaic interface is formed on both prelithiated SiOxand Si anodes. This mosaic interface containing multiple lithium silicates phases, is fundamentally different from the solid electrolyte interface (SEI) formed without prelithiation. The ideal conductivity and mechanical properties of lithium silicates enable improved cycling stability of both prelithiated anodes. With a higher ratio of lithium silicates due to the oxygen participation, prelithiated SiO1.3anode improves the initial coulombic efficiency to 94% in full cell and delivers good cycling retention (77%) after 200 cycles. The insights provided in this work can be used to further optimize high Si loading (>70% by weight) based anodes in future high energy density batteries.

     
    more » « less
  6. Abstract

    Confining molecules in the nanoscale environment can lead to dramatic changes of their physical and chemical properties, which opens possibilities for new applications. There is a growing interest in liquefied gas electrolytes for electrochemical devices operating at low temperatures due to their low melting point. However, their high vapor pressure still poses potential safety concerns for practical usages. Herein, we report facile capillary condensation of gas electrolyte by strong confinement in sub-nanometer pores of metal-organic framework (MOF). By designing MOF-polymer membranes (MPMs) that present dense and continuous micropore (~0.8 nm) networks, we show significant uptake of hydrofluorocarbon molecules in MOF pores at pressure lower than the bulk counterpart. This unique property enables lithium/fluorinated graphite batteries with MPM-based electrolytes to deliver a significantly higher capacity than those with commercial separator membranes (~500 mAh g−1vs. <0.03 mAh g−1) at −40 °C under reduced pressure of the electrolyte.

     
    more » « less
  7. As lithium-ion batteries (LIBs) become vital energy source for daily life and industry applications, a large volume of spent LIBs will be produced after their lifespan. Recycling of LIBs has been considered as an effective closed-loop solution to mitigate both environmental and economic issues associated with spent LIBs. While reclaiming of transition metal elements from LIB cathodes has been well established, recycling of graphite anodes has been overlooked. Here, we show an effect upcycling method involving both healing and doping to directly regenerate spent graphite anodes. Specifically, using boric acid pretreatment and short annealing, our regeneration process not only heals the composition/structure defects of degraded graphite but also creates functional boron-doping on the surface of graphite particles, providing high electrochemical activity and excellent cycling stability. The efficient direct regeneration of spent graphite by using low cost, non-volatile and non-caustic boric acid with low annealing temperature provides a more promising direction for green and sustainable recycling of spent LIB anodes.

     
    more » « less